- 15. The problem has (implicitly) specified the positive sense of rotation. The angular acceleration of magnitude 0.25 rad/s^2 in the negative direction is assumed to be constant over a large time interval, including negative values (for t).
 - (a) We specify $\theta_{\rm max}$ with the condition $\omega=0$ (this is when the wheel reverses from positive rotation to rotation in the negative direction). We obtain $\theta_{\rm max}$ using Eq. 11-14:

$$\theta_{\rm max} = -\frac{\omega_{\rm o}^2}{2\alpha} = -\frac{4.7^2}{2(-0.25)} = 44 \text{ rad }.$$

(b) We find values for t_1 when the angular displacement (relative to its orientation at t=0) is $\theta_1=22$ rad (or 22.09 rad if we wish to keep track of accurate values in all intermediate steps and only round off on the final answers). Using Eq. 11-13 and the quadratic formula, we have

$$\theta_1 = \omega_0 t_1 + \frac{1}{2} \alpha t_1^2 \implies t_1 = \frac{-\omega_0 \pm \sqrt{\omega_0^2 + 2\theta_1 \alpha}}{\alpha}$$

which yields the two roots 5.5 s and 32 s.

(c) We find values for t_2 when the angular displacement (relative to its orientation at t=0) is $\theta_2 = -10.5$ rad. Using Eq. 11-13 and the quadratic formula, we have

$$\theta_2 = \omega_0 t_2 + \frac{1}{2} \alpha t_2^2 \implies t_2 = \frac{-\omega_0 \pm \sqrt{\omega_0^2 + 2\theta_2 \alpha}}{\alpha}$$

which yields the two roots -2.1 s and 40 s.

(d) With radians and seconds understood, the graph of θ versus t is shown below (with the points found in the previous parts indicated as small circles).

